What's New & Novel with Radionuclides & Neuroendocrine Neoplasms?

Disclosures

- I have nothing to disclose

Objectives

- Recognize the role of current anticancer therapies in the management of gastrointestinal neuroendocrine tumors (GEP-NET)
- Recognize the evolving use of theranostics within GEP-NET
- Describe the complexities and intricacies involved with lutetium-177 dotatate therapy

Audience Response Question #1

- Based on the response rates observed in clinical trials, a patient with advanced pancreas neuroendocrine tumor (PNET) experiencing tumor related pain would be more likely to achieve symptomatic relief from which of the following?
 - Somatostatin analogue (octreotide or lanreotide)
 - Everolimus
 - Sunitinib
 - Capecitabine/temozolomide

Audience Response Question #2

- Which of the following statements regarding theranostics in GIP-NET is FALSE?
 - Theranostics is a form of personalized medicine
 - Dotatate is a somatostatin analogue with higher receptor binding affinity compared to octreotide
 - Imaging with 111Lu-dotatate PET assists in determining treatment eligibility for 68Ga-dotatate therapy
 - Theranostics may assist in predicting risks for specific treatment related toxicities

Audience Response Question #3

- Which of the following statements regarding lutetium-177 dotatate therapy is FALSE?
 - An amino acid coinfusion is required for renal protection, and commercially available amino acids tend to be more emetogenic compared to compounded versions
 - Lutetium-177 dotatate is predominantly cleared renally, therefore, urinary contamination can be a concentrated source of radiation exposure
 - Results from NETTER-1 demonstrated a clinically and statistically significant improvement in both PFS and OS among patients treated with lutetium-177 dotatate
 - A patient with non-functional unresectable carcinoid should receive first line treatment with lutetium-177 dotatate based on its superiority over other options
Background: Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs)

- Incidence: 3.56 per 100,000 persons/year
- Prognosis depends on stage, histologic grade, & site of origin

Carcinoid Syndrome

- Symptoms
 - flushing
 - diarrhea
 - palpitations
 - bronchospasm
 - hypotension
- Frequency: 15%
- Mediators: Serotonin, 5-HT, histamine, prostaglandins, histamine

Antiproliferative Treatment Concepts

- Approaches vary depending on:
 - Disease status
 - Extent of metastases, symptomatic burden, & tempo of progression
 - Primary location of tumor
 - Histologic grade
 - Somatostatin receptor avidity
 - Hormonal activity of the tumor
 - Patient specific characteristics
- Systemic categories
 - Somatostatin analogues
 - Octreotide, lanreotide
 - Targeted therapy
 - everolimus, sunitinib, pazopanib
 - Peptide receptor radionuclide therapy (PRRT)
 - 177Lu-DOTATATE
 - Cytotoxic chemotherapy
 - Capecitabine + temozolomide,
 platinum + etoposide, streptozocin
 - Interferon

PROMID: Octreotide LAR

- Inoperable or metastatic midgut NETs (n=85)
- Treatment naïve
- Mixed functional status
- Karnofsky PS ≥ 60
- Exclusion criteria: anti somatostatin therapy, radiotherapy, chemotherapy

Primary endpoint
- OS
- QOL
- Biochemical response

Secondary endpoints
- OS
- QOL
- Biochemical response
PROMID: Octreotide LAR

- Responses
 - SD 67% vs 37% (p=0.0079)
 - PR 2% in each group
 - No CRs

- Active in both functional & non-functional tumors

CLARINET: Lanreotide Depot

Inoperable or metastatic GEP NETs (n=204)

- Somatostatin receptor +
- Ki-67 < 10%
- Non-functional tumors
- Mostly treatment naïve
- Karnofsky PS ≥ 60

- Lanreotide 120mg Q28D (n=101)
- Placebo (n=103)

1:1 Randomization

Primary endpoint
- PFS

Secondary endpoints
- OS
- QoL
- Biochemical response

RADIANT: Everolimus

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Population</th>
<th>Treatment</th>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIANT-1</td>
<td>Open label phase II (n=160)</td>
<td>Advanced PNET w/ PD on chemo</td>
<td>Everolimus (+/- octreotide LAR)</td>
<td>P: ORR S: PFS, OS</td>
</tr>
<tr>
<td>RADIANT-2</td>
<td>Randomized, double-blind phase III (n=423)</td>
<td>Advanced NET w/ carcinoid symptoms</td>
<td>Octreotide LAR (+/- everolimus)</td>
<td>P: PFS S: OS, ORR, 5-HIAA, CgA</td>
</tr>
<tr>
<td>RADIANT-3</td>
<td>Randomized, double-blind phase III (n=352)</td>
<td>Advanced GI & lung non-functional NET</td>
<td>Everolimus vs placebo</td>
<td>P: PFS S: OS, ORR</td>
</tr>
<tr>
<td>RADIANT-4</td>
<td>Randomized, double-blind phase III (n=302)</td>
<td>Advanced GI & lung non-functional NET</td>
<td>Everolimus vs placebo</td>
<td>P: PFS S: OS, ORR, CgA</td>
</tr>
</tbody>
</table>

Clinical Trials: Sunitinib

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Population</th>
<th>Treatment</th>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN-1111</td>
<td>Randomized, double-blind phase III (n=171)</td>
<td>Advanced mixed functional PNET</td>
<td>Sunitinib 37.5 mg/d vs placebo</td>
<td>PFS: 11.4 vs 5.5 m ORR: 9.3 vs 0%</td>
</tr>
</tbody>
</table>

Alliance A021202: Pazopanib

- **Advanced Carcinoid** (n=171)
 - G1 or G2
 - PD within last 12 months
 - Prior SSA required

<table>
<thead>
<tr>
<th>Arm</th>
<th>SD</th>
<th>ORR</th>
<th>PFS (mo)</th>
<th>OS (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pazopanib 800 mg/day</td>
<td>96% vs 81% (p=0.001)</td>
<td>2 vs 8% (p value not reported)</td>
<td>11.6 vs 6.5 (HR=0.53; p=0.0005)</td>
<td>41 vs 42 (HR 1.13; p=0.7)</td>
</tr>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary endpoint: PFS
Secondary endpoints: OS, CR, Safety

Role of Cytotoxic Chemotherapy

E2211: Capecitabine + Temozolomide

- **Advanced PNET** (n=144)
 - G1 or G2
 - PD within last 12 months
 - No prior chemotherapy

<table>
<thead>
<tr>
<th>Arm</th>
<th>T 100 mg/m² q28d days 1–5 (n=72)</th>
<th>C 750 mg/m² BID days 1–14 (n=72)</th>
<th>T 200 mg/m² q28d days 10–14 (n=72)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 100 mg/m² q28d days 1–5 (n=72)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 750 mg/m² BID days 1–14 (n=72)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 200 mg/m² q28d days 10–14 (n=72)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary endpoint: PFS
Secondary endpoints: OS, RR

Case #1

- 48 y.o. M with G1 small bowel NET resected in 2007, new metastases in liver and mesenteric LN in 2015, + carcinoid syndrome
 - PMH includes stage 4 CKD
 - Octreotide LAR 7/2015 – present
 - PD on CT & 68Ga dotatate PET 5/2019

- What are his treatment options?
- How would you counsel & monitor?

Audience Response Question #1

- Based on the response rates observed in clinical trials, a patient with advanced PNET experiencing tumor related pain would be more likely to achieve symptomatic relief from which of the following?
 - Somatostatin analogue (octreotide or lanreotide)
 - Everolimus
 - Sunitinib
 - Capecitabine/temozolomide
Role of Theranostics

Imaging: Past & Present

Background: 177Lu-Dotatate

- FDA approved January 2018
- Granted priority review
- FDA indication
 - Treatment of somatostatin receptor-positive GEP-NETs including foregut, midgut, & hindgut NETs in adults
- Drug class
 - Peptide receptor radionuclide therapy (PRRT)
- Synonyms
 - (177Lu) Oxodotreotide
 - 177Lu-DOTA0-Tyr3-Octreotate

Mechanism of Action: 177Lu-Dotatate

https://seekingalpha.com/article/4124709-novartis-nvs-r-and-d-investor-presentation-slideshow

Pharmacokinetics & Interactions: 177Lu-Dotatate

- Terminal blood elimination half-life = 2.9 (± 0.06) days
- 177Lu radioactive decay half-life = 6.7 days
- Renal impairment
 - Predominantly cleared renally
 - Risk of toxicity may be higher in patients with mild-moderate impairment
 - Severe impairment (CrCl < 30 mL/min) was not studied
- Hepatic impairment
 - No adjustment recommended for mild-moderate impairment
 - Severe impairment (T. bili > 3 x ULN) was not studied
- Drug interactions
 - Avoid long-acting SSAs for 4 weeks prior & 4 hours after 177Lu-dotatate
 - Avoid short-acting SSAs for 24 hours prior

Dosing: 177Lu-Dotatate

- 177Lu-dotatate 7.4 GBq (200 mCi) every 8 weeks x 4 doses
- 77% of patients in trial were able to receive all 4 doses
- Dose adjustments for adverse events
 - Withhold dose & resume at 50% once resolved
 - Thrombocytopenia (grade 3-4)
 - Anemia & neutropenia (grade 3-4)
 - Renal or hepatic toxicity (recommendations vary)
- Premedication & concomitant medications
 - Antiemetics 1 hour prior
 - Amino acid infusion x 4 hours starting 30 minutes prior
 - Octreotide LAR 30mg 4-24 hours after

Administration Considerations: ¹⁷⁷Lu-Dotatate

- Follow currently adopted practices for IV administration of radiopharmaceuticals.

LUTATHERA® (lutetium Lu 177 dotatate) [package insert]. Meldola, Italy: Advanced Accelerator Applications; 2018.

NETTER-1: ¹⁷⁷Lu-Dotatate

Primary Endpoint

- PFS

Secondary Endpoints

- OS
- ORR
- Safety

177Lu-Dotatate + Octreotide LAR (n=116) vs Octreotide LAR (n=113)

NETTER-1: Inoperable, Locally Advanced or Metastatic Midgut NETs (n=229)

- Somatostatin receptor (+)
- Ki67 index ≤ 20%
- PD on octreotide LAR
- Karnofsky PS ≥ 60

177Lu-Dotatate + Octreotide LAR (n=116)

- L: 7.4 GBq Q8W x 4 ± 30mg Q4W

Octreotide LAR (n=113)

- 60mg Q4W

ERASMUS: ¹⁷⁷Lu-Dotatate

Endpoints

- PFS
- OS
- ORR
- Safety

Bronchial & GEP-NETs (n=1214)

- Somatostatin receptor (+)
- Karnofsky PS ≥ 50

177Lu-Dotatate

7.4 GBq Q6-13W x 4 ± Octreotide LAR

PRRT: Shrinking is Possible

Safety Profile

- Warnings/Precautions
 - Myelosuppression
 - Secondary malignancies (0.5-2.7%)
 - Renal toxicity
 - Requires amino acid co-infusion
 - Hepatotoxicity (<1%)
 - Neuroendocrine hormonal crisis (1%)
 - Embryo-fetal toxicity & infertility

Quality of Life Outcomes

Salvage PRRT

- Dutch retrospective study in patients with PD after initial PFS ≥18 months with I-PRRT or ≥14 months after R-PRRT (n=168) & RR-PRRT (n=13)
- Well tolerated
 - 2.2% MDS/AML
 - No grade III/IV nephrotoxicity

Cost Comparison

- 177Lu-dotatate
 - Patient assistance program is limited
 - Cancellation fee may be applied

PRRT Implementation & Planning

- FDA approval: 1/26/18
- 1st treatment administered: 4/18/18
- R&D approval: 2/20/18
- ≥120 pts on waitlist; ≥74 pts started; ≥180 doses administered 9/13/19

- PRRT
 - My role & responsibilities
 - Serve as a liaison between: Pharmacy, medical oncology, nuclear medicine, nursing, finance, radiation therapy, etc.
 - Maintain/update prescreening waitlist & treatment calendar
 - Multi-disciplinary decisions
 - Treatment location
 - Work flow
 - Amino acid solution
 - Split treatment days
 - IV access
 - Foley catheter
 - Scaling capability
 - Wartis management
 - PA process

- Multidisciplinary decisions
 - Treatment location
 - Work flow
 - Amino acid solution
 - Split treatment days
 - IV access
 - Foley catheter
 - Scaling capability
 - Wartis management
 - PA process

PRRT Controversies & Remaining Questions

- Exclusion of patients with bulky mesenteric disease?
- Which patients receive the most benefit with PRRT?
- What is the preferred sequence of therapy?
- Timing & selection of SSA with PRRT

- Exclusion Criteria
 - Creatinine (mg/dL) >40% increase > 1.7
 - Creatinine clearance (mL/min)* < 40 or 40% decrease < 50
 - Bilirubin > 3x ULN
 - Albumin (g/dL) + < 3 +

- *Cockcroft Gault with actual body weight
- **Treatment related toxicity, not baseline organ function
Case #2

- 71 y.o. F with G2 PNET dx in 2014 with metastases to liver, small bowel, para-aortic LN, & hilum
- Capecitabine/temozolomide 6/2016 – 11/2017
- Sunitinib 11/2017 – 2/2018
 - Grade 4 GIB
 - ¹⁷⁷Lu dotatate PET 5/2018
 - ¹⁷⁷Lu dotatate x 4 doses 5/2018 – 11/2018
 - Grade 1 fatigue & cytopenias
 - 30% decrease in tumor volume – PR by RECIST
- Maintenance octreotide LAR as of 7/2019

Audience Response Question #2

- Which of the following statements regarding theranostics in GEP-NET is FALSE?
 - Theranostics is a form of personalized medicine
 - Dotatate is a somatostatin analogue with higher receptor binding affinity compared to octreotide
 - Imaging with ¹⁷⁷Lu-dotatate PET assists in determining treatment eligibility for ⁶⁸Ga-dotatate therapy
 - Theranostics may assist in predicting risks for specific treatment related toxicities

Audience Response Question #3

- Which of the following statements regarding lutetium-177 dotatate therapy is FALSE?
 - An amino acid coinfusion is required for renal protection, and commercially available amino acids tend to be more emetogenic compared to compounded versions
 - Lutetium-177 dotatate is predominantly cleared renally, therefore, urinary contamination can be a concentrated source of radiation exposure
 - Results from NETTER-1 demonstrated a clinically and statistically significant improvement in both PFS and OS among patients treated with lutetium-177 dotatate
 - A patient with non-functional unresectable carcinoid should receive first line treatment with lutetium-177 dotatate based on its superiority over other options

Recent Pertinent Negative Data

- Phase II basket study included 107 patients with well- and moderately-differentiated NET who received pembrolizumab after PD on ≥ 1 prior therapy
 - 3.7% ORR (only in PDL-1 negative tumors)
 - 4.1 month PFS
- Retrospective study in 4,892 patients with stage I-III PNET comparing perioperative therapy vs. surgery alone
 - Shorter OS with perioperative therapy (HR 1.45, p=0.006)

Treatment Overview

 - Neuroendocrine Tumors of the Gastrointestinal Tract, Lung, and Thymus (Carcinoid Tumors)
- NCCN Guidelines Index: Targeted Therapies (Pembrolizumab)
 - Pembrolizumab (Keytruda®)
 - Pembrolizumab in the Treatment of Advanced or Metastatic Neuroendocrine Tumors
- Pembrolizumab (Keytruda®) is indicated for the treatment of adults with unresectable progressive small cell lung cancer
 - Pembrolizumab (Keytruda®) in combination with axitinib (Inhibitor of the VEGF Receptor Tyrosine Kinases)
 - Pembrolizumab (Keytruda®) in combination with apatinib (Inhibitor of the VEGF Receptor Tyrosine Kinases)
Future Directions

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Phase</th>
<th>Patient Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>111Lu-dotatate</td>
<td>II</td>
<td>Inoperable Pheochromocytoma/Paraganglioma</td>
</tr>
<tr>
<td>Nivolumab + 177Lu-dotatate</td>
<td>I/II</td>
<td>Extensive Stage Small Cell Lung Cancer</td>
</tr>
<tr>
<td>Sunstimab vs. 177Lu-dotatate</td>
<td>II</td>
<td>Advanced PMT</td>
</tr>
<tr>
<td>Everolimus vs. 177Lu-dotatate</td>
<td>II</td>
<td>Advanced GEP-NETs</td>
</tr>
<tr>
<td>Pazopanib + temozolomide</td>
<td>II</td>
<td>Advanced PMT</td>
</tr>
<tr>
<td>PEG-221 (SSA-ZM1 conjugate)</td>
<td>II</td>
<td>Advanced GEP or lung NETs</td>
</tr>
<tr>
<td>Cabozantinib vs. placebo</td>
<td>II</td>
<td>Advanced GEP or lung NETs after PD on everolimus</td>
</tr>
<tr>
<td>Lenvatinib</td>
<td>II</td>
<td>Advanced NET after PD on initial therapy</td>
</tr>
</tbody>
</table>

Conclusions

- SSAs, everolimus, sunitinib, pazopanib, capetcitabine/temozolomide, & PRRT demonstrate anti-proliferative properties & play a significant role in the treatment of patients with advanced GEP-NETs.
- 177Lu-dotatate & 186Re-dotatate are a revolutionary therapeutic pair, however, candidate selection & timing are important considerations.
- Implementation & coordination of a 177Lu-dotatate program is a challenge & requires multidisciplinary strategic planning.

Acknowledgements

- GI Medical Oncology
 - Jordan Berlin, MD
 - Laura Goff, MD, MSCI
 - Kristen Cimbora, MD, MSCI
 - Sanya Dao, MD
 - Cathy Eng, MD, FACP, FASCO
 - Rajiv Agarwai, MD
 - Dave Eiser, MSON, NP-C

- Nuclear Medicine
 - Aaron Jessop, MD, MBA
 - Dawn Stone, BS, CNMT

- Radiation Safety
 - Chris Heilstein, MSc, CHP

- Nuclear Pharmacy

- Nursing
 - Cody Stansel, BSN, NE-BC, CMSRN

- Administration
 - Kristen Muncy, MHA

- Nursing Safety:
 - Aaron Jessop, MD, MBA

Sources Cited

- Aaron Jessop, MD, MBA
 - Dave Eisner, MSN, NP-C
 - Rajiv Agarwai, MD
 - Satya Das, MD
 - Kristen Ciombor, MD, MSCI
 - Dana Cardin, MD, MSCI
 - Laura Goff, MD, MSCI
 - Jordan Berlin, MD
 - Aaron Jessop, MD, MBA
 - Dave Eisner, MSN, NP-C
 - Rajiv Agarwai, MD
 - Satya Das, MD
 - Kristen Ciombor, MD, MSCI
 - Dana Cardin, MD, MSCI
 - Laura Goff, MD, MSCI
 - Jordan Berlin, MD
 - Aaron Jessop, MD, MBA
 - Dave Eisner, MSN, NP-C
 - Rajiv Agarwai, MD
 - Satya Das, MD
 - Kristen Ciombor, MD, MSCI
 - Dana Cardin, MD, MSCI
 - Laura Goff, MD, MSCI
 - Jordan Berlin, MD
 - Aaron Jessop, MD, MBA
 - Dave Eisner, MSN, NP-C
 - Rajiv Agarwai, MD
 - Satya Das, MD
 - Kristen Ciombor, MD, MSCI
 - Dana Cardin, MD, MSCI
 - Laura Goff, MD, MSCI
 - Jordan Berlin, MD
 - Aaron Jessop, MD, MBA
 - Dave Eisner, MSN, NP-C
 - Rajiv Agarwai, MD
 - Satya Das, MD
 - Kristen Ciombor, MD, MSCI
 - Dana Cardin, MD, MSCI
 - Laura Goff, MD, MSCI
 - Jordan Berlin, MD
 - Aaron Jessop, MD, MBA
 - Dave Eisner, MSN, NP-C
 - Rajiv Agarwai, MD
 - Satya Das, MD
 - Kristen Ciombor, MD, MSCI
 - Dana Cardin, MD, MSCI
 - Laura Goff, MD, MSCI
 - Jordan Berlin, MD
 - Aaron Jessop, MD, MBA
 - Dave Eisner, MSN, NP-C
 - Rajiv Agarwai, MD
 - Satya Das, MD
 - Kristen Ciombor, MD, MSCI
 - Dana Cardin, MD, MSCI
 - Laura Goff, MD, MSCI
 - Jordan Berlin, MD
 - Aaron Jessop, MD, MBA
 - Dave Eisner, MSN, NP-C
 - Rajiv Agarwai, MD
 - Satya Das, MD
 - Kristen Ciombor, MD, MSCI
 - Dana Cardin, MD, MSCI
 - Laura Goff, MD, MSCI
 - Jordan Berlin, MD
 - Aaron Jessop, MD, MBA
 - Dave Eisner, MSN, NP-C
 - Rajiv Agarwai, MD
 - Satya Das, MD
 - Kristen Ciombor, MD, MSCI
 - Dana Cardin, MD, MSCI
 - Laura Goff, MD, MSCI

https://www.clinicaltrials.gov