Updates in the Treatment of Breast Cancer
Michael J. Berger, PharmD, BCOP
Clinical Specialist Pharmacist,
The Stefanie Spielman Comprehensive Breast Center,
The James Cancer Hospital and Solove Research Institute at
The Ohio State University Wexner Medical Center

Disclosures
Novartis Oncology
speaker’s bureau, advisory board
Genetech Oncology
advisory board

Objectives
- Differentiate between available CDK4/6 inhibitors used in the treatment of hormone positive (HR+) metastatic breast cancer (MBC) based on clinical efficacy and tolerability
- Explore the changing landscape of Her2 positive (Her2+) early stage breast cancer (ESBC) treatment
- Discuss the utility of selected biomarkers to guide treatment decisions in MBC
- Appraise emerging strategies for the treatment of triple negative metastatic breast cancer (TNMBC)

HR(+) MBC - Background
- < 10% patients initially present with MBC
- Heterogeneous behavior
 - Median survival ~ 4 - 5 years
- Goals of therapy
 - Clinical trials preferred
 - Endocrine therapy “-static”
- PFS interval will shorten with each new regimen

Pagani O et al. JNCI. 2010; 102(7):1

Cyclin-Dependent Kinase (CDK) 4 and 6 Pathway

NCCN Clinical Practice Guidelines for Breast Cancer 2018
Systemic first-line treatment of recurrent or Stage IV ER+/HER2- disease with no prior endocrine therapy within 1 year

CDK4/6 Inhibitor
CCND1 (Cyclin D1)
RB1
Cell Cycle Suspended (G, phase)
Cell Cycle Progression (S phase)
E2F
E2F
ER
and/or PR+
HER2-
Chemotherapy (category 2b)
Casematropic
Selective ER modulator (category 3)
Selective ER downregulator (category 3b)
CDK4/6 inhibitor + AI (category 1)
Vascular crisis
Chemotherapy (category 2b)
CDK 4/6 Inhibitors for HR+, Her2(-) Postmenopausal MBC

- **Palbociclib (Ibrance™)**
 - First-line, combination with aromatase inhibitor (AI)
 - Second-line, + Fulvestrant
- **Ribociclib (Kisqali™)**
 - First-line, + AI
 - First-line or Second-line, + Fulvestrant
 - Pre/perimenopausal or postmenopausal
- **Abemaciclib (Verzenio™)**
 - First-line, + AI
 - Second-line, + Fulvestrant
 - Monotherapy, following previous endocrine and chemo

Phase III Trials: Efficacy of First-line CDK 4/6 Inhibitors

<table>
<thead>
<tr>
<th>Study</th>
<th>Palbociclib + AI</th>
<th>Ribociclib + AI</th>
<th>Abemaciclib + Let/Ana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment groups</td>
<td>Palbociclib + Letrozole (n = 444) vs. Letrozole (n = 222)</td>
<td>Ribociclib + Letrozole (n = 334) vs. Letrozole (n = 334)</td>
<td>Abemaciclib + Letrozole (n = 328) vs. Letrozole (n = 165)</td>
</tr>
<tr>
<td>Study drug dosing</td>
<td>125 mg daily, (3 weeks on, 1 off)</td>
<td>600 mg daily, (3 weeks on, 1 off)</td>
<td>150 mg BID continuous dosing</td>
</tr>
<tr>
<td>PFS (months)</td>
<td>24.8 vs. 14.5 (HR 0.58, p<0.001)</td>
<td>25.3 vs. 16 (HR 0.57, p<0.0001)</td>
<td>28.2 vs. 16.7 (HR 0.54, p<0.0001)</td>
</tr>
<tr>
<td>ORR %</td>
<td>42 vs. 35</td>
<td>41 vs. 26</td>
<td>48 vs. 35</td>
</tr>
</tbody>
</table>

Phase III Trials, First-line: Safety of CDK 4/6 Inhibitors

<table>
<thead>
<tr>
<th>Selected adverse events (all grades) %</th>
<th>Palbociclib + AI</th>
<th>Ribociclib + AI</th>
<th>Abemaciclib + AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>80</td>
<td>75</td>
<td>41</td>
</tr>
<tr>
<td>Neutrophil count reduction</td>
<td>1.8</td>
<td>1.5</td>
<td>< 1</td>
</tr>
<tr>
<td>Elevated LFT's</td>
<td>10</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Nausea</td>
<td>35</td>
<td>62</td>
<td>39</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>26</td>
<td>35</td>
<td>81</td>
</tr>
<tr>
<td>Fatigue</td>
<td>37</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>Alopecia</td>
<td>32</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>Venous thromboembolism</td>
<td>2.5</td>
<td>2.7</td>
<td>8</td>
</tr>
<tr>
<td>QTc prolongation</td>
<td>0.7</td>
<td>4.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Elevated serum creatinine</td>
<td>5.7</td>
<td>2.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

So What's the Difference?

<table>
<thead>
<tr>
<th>Palbociclib</th>
<th>Ribociclib</th>
<th>Abemaciclib</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDA indication</td>
<td>1st, 2nd line</td>
<td>1st, 2nd line</td>
</tr>
<tr>
<td>Dosing</td>
<td>Daily x 3 wks</td>
<td>Daily x 3 wks</td>
</tr>
<tr>
<td>Cost of starting dose</td>
<td>$15,000 / month</td>
<td>$13,000 / month</td>
</tr>
<tr>
<td>Reduced cost for dose reduction</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Interactions with other medications</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Drug interactions</td>
<td>CYP3A4</td>
<td>CYP3A4</td>
</tr>
<tr>
<td>Required monitoring</td>
<td>QRS, LFT's</td>
<td>QTc, LFT's, EKG</td>
</tr>
<tr>
<td>Other</td>
<td>Take with food</td>
<td>Take with food</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>“niche”</td>
<td>“niche”</td>
</tr>
</tbody>
</table>

Summary – CDK 4/6

- All 3 agents approved for first line
- 2nd line indication when not used up-front
- Compelling PFS = 2 years
- No OS data
- Post-progression data needed
- Well tolerated
- Required monitoring
- “Niche” for for different agents
Objectives

- Differentiate between available CDK4/6 inhibitors used in the treatment of hormone positive (HR+) metastatic breast cancer (MBC) based on clinical efficacy and tolerability
- Explore the changing landscape of Her2 positive (Her2+) early stage breast cancer (ESBC) treatment
- Discuss the utility of selected biomarkers to guide treatment decisions in MBC
- Appraise emerging strategies for the treatment of triple negative metastatic breast cancer (TNMBC)

Pertuzumab and Trastuzumab Bind to Distinct Extracellular Regions

- Pertuzumab
- Trastuzumab

Pertuzumab

- Inhibits HER2 dimerization with other HER family receptors
- Activates ADCC
- Inhibits multiple HER-mediated signaling pathways
- Prevents HER2 domain cleavage

Trastuzumab

- Activates ADCC
- Inhibits HER-mediated signaling pathways

Her2(+) Early Stage Breast Cancer: What We Know

1. Locally advanced disease = neoadjuvant chemo
2. Adding pertuzumab to a trastuzumab + chemotherapy backbone increases pCR
 - NeoSphere
 - TRYPHAENA
3. Anthracycline or non-anthracycline based regimens have similar pCR rates
4. pCR correlates to DFS

Unanswered Questions

- Adjuvant pertuzumab?
 - Adjuvant pertuzumab if neoadjuvant pertuzumab-based chemo given?
- Extended Her2 targeted therapy?
 - pCR endpoint with OS correlate?

Phase III Trial of Adjuvant Pertuzumab + Chemotherapy: APHINITY

- ESBC
 - Adjuvant, Her2(+), Node(+) or Node(-) > 1 cm
 - Within 8 wks of surgery
- Primary endpoint
 - invasive DFS in months (mo) by independent review
- Stratification
 - Nodal status
 - Adjuvant chemo regimen
 - ER/PR
 - Geography

APHINITY – Efficacy Results

- Intention-to-Treat Population
- Node (-) 98.4
- Node (+) 96.2
- Stratified hazard ratio, 0.81 (95% CI, 0.66–1.00)
- P=0.045
Pertuzumab-induced Diarrhea

<table>
<thead>
<tr>
<th>Neosphere® (PTD)</th>
<th>TRYPHAENA® (TCH + P)</th>
<th>APHINITY (all chemo + Pertuz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea % (all grades)</td>
<td>46</td>
<td>72</td>
</tr>
<tr>
<td>Diarrhea % (grade 3)</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

- Clinical practice
- Refractory
- Future developments
 - Crofelemer 125 mg BID prophylactically (NCT 02910219)
 - Rifaxamin case reports

Scalp Cooling to Prevent Chemotherapy-induced Alopecia

- Anthracycline, Taxane alopecia
- CTCAE v4.0 grading for alopecia
- Concerns:
 - scalp metastases
 - safety
- Canadian/European experience
- Scalp cooling caps in USA
 - Rent for duration of therapy:
 - $300-500/month
 - Store in a cooler with dry ice
 - Many different manufacturers

Scalp Cooling Devices

- DigniCap™ system
 - FDA approved 2015
 - $325 / treatment in 2017
- Paxman™ system
 - FDA approved 2017
 - $2200 lifetime max
- Previous clinical trial
 - ≤ Grade 1 alopecia: cooling group 66.3% vs 0% control group (P < .001)
- SCALP trial

Neratinib

- Previous attempts to improve upon outcomes
- Oral TKI
- pan-HER inhibitor
- Dose is 240 mg once daily for 1 year
 - 40 mg caps x 6

Phase III Trial of Adjuvant Neratinib: ExteNET

- Adjuvant, HER2+ stage I-IIIC, completed previous neo/ad chemo and 1 year trastuzumab
- Within 1 yr of completing trastuzumab

Primary endpoint
- Invasive DFS

Stratification
- Nodal status
- Adjuvant chemotherapy regimen
- Hormone receptor status

Neratinib 240 mg PO once daily x 1 year
n = 1420

Endocrine therapy for ER/PR(+) patients permitted

Placibo 240 mg PO once daily x 1 year
n = 1420
ExteNET – 5-yr Results

Neratinib-induced diarrhea

<table>
<thead>
<tr>
<th>ExtNET → Neratinib Placebo</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea % (all grades)</td>
<td>72</td>
<td>36</td>
</tr>
<tr>
<td>Diarrhea % (grade 3)</td>
<td>40</td>
<td>2</td>
</tr>
</tbody>
</table>

Prophylactic Loperamide:
First 2 weeks: Loperamide 4 mg orally TID
Next 6 weeks: Loperamide 4 mg orally BID
After the first 8 weeks: Loperamide 4 mg orally PRN

Unanswered Questions

- Adjuvant pertuzumab benefit? Yes
- Adjuvant pertuzumab if neoadjuvant pertuzumab-based chemo given? Consider for high risk
- Extended Her2 targeted therapy? Yes
- pCR endpoint with OS correlate? Data maturing

Summary – Her2(+) ESBC

- Neoadjuvant chemo+ trastuzumab & pertuzumab remain the SOC for locally advanced, Her2(+) ESBC
- High risk patients who did not receive neoadjuvant pertuzumab, or who have residual disease following surgery – consider adjuvant pertuzumab
- Scalp cooling may prevent alopecia for patients receiving taxane based chemotherapy
- Consider extending Her2-directed therapy with neratinib for selected (HR+) patients

Objectives

- Differentiate between available CDK4/6 inhibitors used in the treatment of hormone positive (HR+) metastatic breast cancer (MBC) based on clinical efficacy and tolerability
- Explore the changing landscape of Her2 positive (Her2+) early stage breast cancer (ESBC) treatment
- Discuss the utility of selected biomarkers to guide treatment decisions in MBC
- Appraise emerging strategies for the treatment of triple negative metastatic breast cancer (TNMBC)

Pharmacogenomics: MBC Biomarkers

- Many tests commercially available for blood/tissue:
 - TEMPUS™
 - Guardant 360™
 - Foundation Medicine™
 - Others
- ER/PR – endocrine therapy
- HER2+ / ERBB2 – targeted therapy
- BRCAT, BRCAT
- AP
- ESRR
- EGFR – lapatinib (7)
- AKT – pancreatin (7)
- PI3K – lapatinib, everolimus (7)
- PTEN
- PALB2 – DNA damage (7)
- ATM – DNA damage (7)
- p53
- PD, PD-L1 – checkpoint inhibitor (7)
- CEA, CA 15-3, CA 27-29

Hurvitz S et al. SABCS 2017 annual meeting, Dec 6, 2017; San Antonio, TX. Poster #P1-14-01.
Olaparib (LYNPARZA™)

- BRCA mutations
- Potent, oral, PARP inhibitor
- FDA indication:
 - Germline BRCA-mutated metastatic breast
- BID with or without food
- Fatigue, anemia, neutropenia, N/V (mod-high), AML/MDS
- Major CYP3A4 substrate
- Potency: Talazoparib > Niraparib > Rucaparib > Olaparib

Mechanisms of DNA Repair

OliveiAD - PFS

Phase III Trial of Olaparib: OliviAD

MBC
- Germline BRCA mutation
- Her2⁻/ any ER/PR⁻
- Previous anthracycline and taxane
- Previous endocrine therapy for MBC if ER/PR⁻

Primary endpoint
- PFS

Secondary endpoints
- Overall survival
- Safety
- Objective response rate

Results
- CBR at 16 weeks: 38% (evaluable patients)
- CBR at 24 weeks: 29%
- Overall survival: 16.5 months

Robson M et al. NEJM 2017; Aug 10;377(6): 523-533

OliveiAD - OS

Androgen Receptor (AR⁺) - MBC

- Androgen receptor expression common in TNBC
- Less aggressive phenotype (“LAR“)
- Bicalutamide, Abiraterone trials
- Enzalutamide potent androgen blocker
- Enzalutamide drug interactions
 - Induces 2C9, 2C19, 3A4
 - Fatigue, GI distress, decreased appetite
- Medication access challenges

Phase II Trial of Enzalutamide

Locally advanced or MBC
- TNBC, AR⁺
- No limit on number of priors for MBC

Primary endpoint
- Clinical benefit rate (CBR) at 16 weeks
- Evaluable population – AR ≥ 10% (n = 78)

Results
- CBR at 16 weeks: 100%
- OS: 18.3 months

Robson M et al. NEJM 2017; Aug 10;377(6): 523-533

Robson M et al. NEJM 2017; Aug 10;377(6): 523-533
ESR1 gene mutation

- **ESR1** – estrogen receptor alpha
- **ESR2** - estrogen receptor beta
- Frequency – 12 - 20%1, as high as 54%
- Especially prevalent in patients who progressed on AI’s
- Confers resistance to AI’s1,2
- Mutation shortens PFS, OS2

Fulvestrant in ESR1 Mutation

- **SoFEA**
 - Wild-type ESR1 – no difference between arms
 - Mutant ESR1 (39%):
 - Fulvestrant (n=45): PFS - 5.7 months
 - Exemestane (n=18): PFS - 2.5 months (HR 0.52, p = 0.02)
- **PALOMA-3**
 - Wild-type ESR1
 - Fulvestrant + Palbo: PFS - 9.5 months
 - Mutant ESR1 (25%)
 - Fulvestrant + Palbo (n=63): PFS - 9.4 months
- Fulvestrant may confer benefit in ESR1 mutation
- CDK4/6 inhibitor may confer benefit regardless if ESR1 mutant

Summary – Selected Biomarkers for MBC

- Pharmacogenomic testing of tumor DNA to reveal actionable targets is evolving
 - Olaparib provides a nice PFS benefit in germline BRCA1/2 mutated MBC
 - Enzalutamide may provide a salvage treatment option in AR(+) MBC
 - Fulvestrant should be the preferred endocrine therapy backbone in MBC patients who harbor an ESR1 mutation

Objectives

- Differentiate between available CDK4/6 inhibitors used in the treatment of hormone positive (HR+) metastatic breast cancer (MBC) based on clinical efficacy and tolerability
- Explore the changing landscape of Her2 positive (Her2+) early stage breast cancer (ESBC) treatment
- Discuss the utility of selected biomarkers to guide treatment decisions in MBC
- Appraise emerging strategies for the treatment of triple negative metastatic breast cancer (TNMBC)

Triple Negative MBC - Background

- Subtype lacking ER/PR receptor and Her2 overexpression
- Emerging sub classifications show much heterogeneity
- Disproportionately affects premenopausal African / Hispanic ancestry
- High proliferation, poorly differentiated, higher mutational load
- Aggressive – 15% of breast cancer cases but 25% of deaths
- More frequent mets to brain and viscera
- Decreased OS - 1 year from time of metastases
- Chemoresistant (platinum?) initial – multidrug resistant
- 10-20% of TNMBC harbor a BRCA mutation as well
 - Overlap here from previous section (olaparib, enzalutamide)

Phase III Trial of Carboplatin vs. Docetaxel in TNMBC: TNT

- **TNT** MBC / LABC
- TNBC or germline +BRCA mutation (any ER/PR/Her2)
- No previous platinum
- No previous chart for MBC

Primary endpoint

- **ORR**

Results

- **ORR:** Carbo 31%, Docetaxel 36%
- **PFS:** Carbo 3.1 mo, Docetaxel 4.5
- **ORR** germline +BRCA:
 - Carbo 68%, Docetaxel 33%

- Carboplatin AUC 6 Q21 days x 4-6 cycles n = 188
 - Or until disease progression or sooner, crossover allowed
- Docetaxel 100 mg/m2 Q21 days x 4-6 cycles n = 188

Immunotherapy: Checkpoint Inhibitors in TNMBC

- Many TNMBCs contain tumor-infiltrating lymphocytes (TILs) indicative of a robust host immune response.
- Presence of TILs is a prognostic indicator:
- Clear association with TILs and improved survival in early stage TNBC.
- Increased attention led to the study of immune-checkpoint blockade in TNMBC.
- Atezolizumab, Avetumab, and Pembrolizumab.

Checkpoint Inhibitors

Mechanism of Action

Checkpoint Inhibitors: Monotherapy in TNMBC

<table>
<thead>
<tr>
<th>Drug</th>
<th>Phase</th>
<th>Population</th>
<th>n</th>
<th>Primary endpoint</th>
<th>ORR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atezolizumab</td>
<td>1a</td>
<td>PD-L1 (+) and (-)</td>
<td>115</td>
<td>Safety</td>
<td>10% (13% PD-L1+)</td>
</tr>
<tr>
<td>Avetumab</td>
<td>1b</td>
<td>PD-L1 (+) and (-)</td>
<td>28</td>
<td>Safety</td>
<td>8.6% (14% PD-L1+)</td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>2</td>
<td>PD-L1 (+) and (-)</td>
<td>170</td>
<td>Safety & efficacy</td>
<td>6.5% (6.2% PD-L1+)</td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>2</td>
<td>PD-L1 (-)</td>
<td>20</td>
<td>Safety</td>
<td>27%</td>
</tr>
<tr>
<td>Pembrolizumab vs. CPC (KEYNOTE 10)</td>
<td>3</td>
<td>Stratified by PD-L1 tumor status (large cohort)</td>
<td>830</td>
<td>PFS, OS</td>
<td></td>
</tr>
</tbody>
</table>

Checkpoint Inhibitors: Monotherapy in TNMBC

Checkpoint Inhibitors + Chemotherapy in TNMBC

<table>
<thead>
<tr>
<th>Drug</th>
<th>Phase</th>
<th>Population</th>
<th>n</th>
<th>Primary endpoint</th>
<th>ORR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atezolizumab</td>
<td>1b</td>
<td>PD-L1 (+) and (-)</td>
<td>32</td>
<td>Safety</td>
<td>18% (14% 1st line)</td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>1b/2</td>
<td>PD-L1 (+) and (-)</td>
<td>39</td>
<td>Safety & efficacy</td>
<td>33% (41% 1st line)</td>
</tr>
<tr>
<td>Pembrolizumab vs. nab-paclitaxel (IMPASSION 130)</td>
<td>3</td>
<td>PD-L1 (+) and (-)</td>
<td>900</td>
<td>PFS, OS</td>
<td></td>
</tr>
</tbody>
</table>

Sacituzumab govitecan

- Antibody-drug conjugate
- SN-38 + humanized IgG
- SN-38 - Topoisomerase I inhibitor - double-stranded DNA breaks
- Niratocan - activity in MBC
- SN-38 - 100 to 1000 fold higher potency than irinotecan
- Targets TROP-2 glycoprotein receptor
- Found on > 90% triple (-) tumors
- Can selectively deliver SN-38 to tumors with limited toxicity.

Phase I/II Trial of Sacituzumab govitecan

TNMBC

- ≥ 1 prior chemo for MBC although median was 5 prior therapies

Primary endpoints

- ORR
- Secondary endpoints – PFS, OS, safety

Results

- ORR - 36%
- 70% patients had ≤ tumor burden
- PFS - 6 months
- OS - 16.6 months
- Safety – grade 3 neutropenia 39% (FN 7%), grade 3 diarrhea 13%

Current status

- FDA breakthrough designation, phase III trial vs. CPC, patients with at least 2 prior.
Ipatasertib

- PI3K/AKT signaling pathway
 - Often activated in breast cancer
 - Subgroup of TNMBC’s have pathway activation
 - PTEN deficiency ≈ 50% TNMBC’s

Ipatasertib

- Highly selective oral ATP-competitive, small-molecule AKT inhibitor
 - Phase I safety: GI, asthenia, fatigue, rash

Phase II Trial of Ipatasertib + Paclitaxel in TNMBC: LOTUS

TNMBC

- No previous chemo for MBC
 - Stratified:
 - PTEN status
 - Neo/adjuvant chemo Y/N
 - Chem-free interval > 12 mo

Primary endpoint

- PFS

Key secondary endpoint

- PFS in PI3K/AKT altered tumors

Results

- PFS 1.8 vs 4.9 months (p=0.037)
- PFS in PI3K/AKT altered tumors:
 - 9 vs 4.9 months (p=0.041)

Ipatasertib 400 mg once daily, days 1-21 + Paclitaxel 80 mg/m2 days 1, 8, 15 Q28 days
n = 62

Placebo 400 mg once daily, days 1-21 + Paclitaxel 80 mg/m2 days 1, 8, 15 Q28 days n = 62

Summary – Emerging Strategies for TNMBC

- Limited treatment options, no preferred options
- Pharmacogenomic testing may identify a target
- Clinical trials strongly encouraged
- Immunotherapy trials ongoing although early results not overwhelming
- Sacituzumab govitecan and ipatasertib are two investigational agents of interest

Thank You

Michael J. Berger, PharmD, BCOP
Clinical Specialist Pharmacist
The Stefanie Spielman Comprehensive Breast Center,
The James Cancer Hospital & The Ohio State University Medical Center