Chimeric Antigen Receptor T-Cell Therapies: Improving outcomes, but at what risk?

Larry W. Buie, PharmD, BCOP, FASHP
Clinical Manager, Adult Pharmacy Services
PGY2 Oncology Pharmacy Residency Program Director
Memorial Sloan Kettering Cancer Center
12 October 2019

Objectives
- Identify currently approved CAR T-cell products and their place in therapy
- Describe cytokine release syndrome (CRS) and neurotoxicity associated with CAR T-cell administration
- Identify appropriate treatment strategies for CRS and neurotoxicity

ARS Question #1
JS is a 40 year old male with acute lymphoblastic leukemia that experienced a CR following an AYA protocol, relapsed and then received blinatumomab with MRD- response. He subsequently relapsed a second time and is inquiring about CAR T-cell therapy. Which of the following is appropriate information for JS?

A. There are no data for CAR T-cell therapy in adult patients with ALL
B. He would not be eligible for tisagenlecleucel, but may be available for a clinical trial
C. He is eligible for treatment with tisagenlecleucel
D. He should not consider CAR T-cell therapy because he is on his second relapse

ARS Question #2
Which of the following CAR construct and time to toxicity are appropriately matched?

A. Tisagenlecleucel → CD28 co-stimulatory domain → faster onset of CRS
B. Axicabtagene ciloleucel → 4-1BB co-stimulatory domain → faster onset of CRS
C. Axicabtagene ciloleucel → CD28 co-stimulatory domain → faster onset of CRS
D. Tisagenlecleucel → 41BB co-stimulatory domain → faster onset of CRS

ARS Question #3
BR, a 55 year old male with multiply-relapsed NHL receives axicabtagene ciloleucel infusion. He tolerates his pre-conditioning chemotherapy and the infusion without many problems. However, on day 2 of his infusion, he develops a fever with a low-flow oxygen requirement. He is slower to arouse than usual, but still wakes when his name is called. This is most likely described and treated by which of the following:

A. Grade 2 CRS with overlapping Grade 1 neurotoxicity → JR should receive a dose of tocilizumab 8 mg/kg.
B. Grade 3 Neurotoxicity → BR should receive dexamethasone 10 mg IV q 6 hours until resolution
C. Grade 1 CRS → BR should receive a dose of siltuximab 11 mg/kg
D. BR is not experiencing any toxicities associated with CAR T-cell therapy

Disclosures
- Advisory Boards
 - Pfizer
 - Amgen
 - Jazz Pharmaceuticals
Need for Additional Therapies in Hematologic Malignancies
Relapsed and refractory disease, following treatment with conventional and targeted therapies or bone marrow transplantation, is associated with a poor prognosis.

Tumor Immune Escape
- Metabolically hostile microenvironment
- Thymic selection
- T-cell anergy
- Impaired tumor MHC antigen presentation
- Increased expression of negative co-stimulatory ligands
- Expansion of Tregs
- Increased production of inhibitory enzymes and cytokines
- Downregulation of NK cells

Harnessing the Immune System
- Stem cell transplant
- Vaccine therapy
- Cytokine therapy
- Immune checkpoint inhibitors
- Adoptive transfer of tumor infiltrating cells
- Bi-specific T-cell engaging antibody (BiTE®) therapy
- Chimeric antigen receptor (CAR) T-cells

Chimeric Antigen Receptor T-Cells (CAR Ts)
- CAR design
 - CD3ζ signaling element
 - Costimulatory receptor
 - Targeted single chain variable fragment
- Major histocompatibility independent mechanism

FDA Approved CAR T Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Co-Stimulatory Domain</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tisagenlecleucel (Kymriah®)</td>
<td>41BB</td>
<td>Patients up to 25 years of age with B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in second or later relapse</td>
</tr>
<tr>
<td>Tisagenlecleucel (Kymriah®)</td>
<td>41BB</td>
<td>Adult patients with relapsed or refractory large B-cell lymphoma after 2 or more lines of systemic therapy</td>
</tr>
<tr>
<td>Axicabtagene ciloleucel</td>
<td>CD28</td>
<td>Adult patients with relapsed or refractory large B-cell lymphoma after 2 or more lines of systemic therapy</td>
</tr>
</tbody>
</table>

T-cell Isolation and Gene Transfer

Pre-Conditioning Chemotherapy

- Improves antitumor activity
- Depletion of leukocytes
- Decrease in regulatory T-cells
- Decreased indoleamine production
- Tumor debulking
- Reduction in tumor antigen
- Cyclophosphamide and fludarabine
 - Increase T-cell expansion
 - Improved disease-free survival

Tisagenlecleucel Expansion and Persistence

Case Study #1 ALL

- JS is a 40 year old male with acute lymphoblastic leukemia (ALL) that experienced a CR following an AYA protocol, relapsed and then received blinatumomab with MRD-negative response. He subsequently relapsed a second time and is inquiring about CAR T-cell therapy.

Tisagenlecleucel in ALL (ELIANA)

- Single Cohort, Phase II, Multicenter, Global Study
- Secondary Endpoints: CR rates, MRD response, duration of remission, EFS, OS, Kinetics, Safety
-

CR = complete response/remission
AYA = adolescent young adult
MRD = minimal residual disease

Tisagenlecleucel Toxicity

<table>
<thead>
<tr>
<th>Type of Event</th>
<th>Any Grade (N=75)</th>
<th>Grade 3 (N=25)</th>
<th>Grade 4 (N=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS, N (%)</td>
<td>67 (89)</td>
<td>26 (25)</td>
<td>30 (40)</td>
</tr>
<tr>
<td>Neurologic Event, N (%)</td>
<td>30 (40)</td>
<td>10 (40)</td>
<td>0</td>
</tr>
<tr>
<td>Infection, N (%)</td>
<td>32 (43)</td>
<td>18 (23)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Febrile Neutropenia, N (%)</td>
<td>26 (35)</td>
<td>24 (32)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Extended Cytopenias, N (%)</td>
<td>28 (37)</td>
<td>12 (16)</td>
<td>12 (16)</td>
</tr>
<tr>
<td>Tumor Lysis Syndrome</td>
<td>3 (4)</td>
<td>3 (4)</td>
<td>0</td>
</tr>
</tbody>
</table>

CRS = Complete Remission Syndrome
CRS = CR with incomplete hematologic recovery
DOR = duration of remission
EFS = event-free survival
OS = overall survival

ARS Question #1

JS is a 40 year old male with acute lymphoblastic leukemia that experienced a CR following an AYA protocol, relapsed and then received blinatumomab with MRD- response. He subsequently relapsed a second time and is inquiring about CAR T-cell therapy. Which of the following is appropriate information for JS?

A. There are no data for CAR T-cell therapy in adult patients with ALL
B. He would not be eligible for tisagenlecleucel, but may be available for a clinical trial
C. He is eligible for treatment with tisagenlecleucel
D. He should not consider CAR T-cell therapy because he is on his second relapse

CASE Study #2 Relapsed DLBCL

BR, a 55 year old male with multiply-relapsed NHL receives axicabtagene ciloleucel infusion. He tolerates his pre-conditioning chemotherapy and the infusion without many problems. However, on day 2 of his infusion, he develops a fever with a low-flow oxygen requirement. He is slower to arouse than usual, but still wakes when his name is called.

Tisagenlecleucel in Lymphoma (Juliet)

International, Phase II, Multicenter

Leukapheresis → Lymphodepletion → T-Cell Infusion

Primary Endpoint: Best Overall Response Rate

Secondary Endpoints: response duration, OS, safety, cellular kinetics

Tisagenlecleucel Toxicity in Lymphoma

<table>
<thead>
<tr>
<th>Type of Event</th>
<th>Any Grade (N=111)</th>
<th>Grade 3/4 (N=111)</th>
<th>Event >8 weeks after infusion (N=96)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS, N (%)</td>
<td>64 (58)</td>
<td>24 (22)</td>
<td>0</td>
</tr>
<tr>
<td>Neurologic Event, N (%)</td>
<td>23 (21)</td>
<td>13 (12)</td>
<td>8 (8)</td>
</tr>
<tr>
<td>Infection, N (%)</td>
<td>38 (34)</td>
<td>22 (20)</td>
<td>37 (39)</td>
</tr>
<tr>
<td>Febrile Neutropenia, N (%)</td>
<td>17 (15)</td>
<td>16 (15)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Extended Cytopenias, N (%)</td>
<td>49 (44)</td>
<td>36 (32)</td>
<td>NA</td>
</tr>
<tr>
<td>Tumor lysis Syndrome, N (%)</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>0</td>
</tr>
</tbody>
</table>

Tisagenlecleucel in Lymphoma Results

ORR, % 52
CR, % 40
PR, % 12
Median DOR, months Not reached
Median PFS, months 12 months
OS-12 months, predicted 40%

Axicabtagene Ciloleucel in Lymphoma (Zuma-1)

International, Phase I, Multicenter

Leukapheresis → Lymphodepletion → T-Cell Infusion 2X10⁶ Cells/Kg

Primary Endpoint: Objective Response

Secondary Endpoints: response duration, PFS, OS, safety, biomarker assessments

Axicabtagene Ciloleucel in Lymphoma Results

<table>
<thead>
<tr>
<th>ORR, %</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR, %</td>
<td>58</td>
</tr>
<tr>
<td>PR, %</td>
<td>25</td>
</tr>
<tr>
<td>Median time to response, months</td>
<td>1.0</td>
</tr>
<tr>
<td>Median DOR, months</td>
<td>11.1</td>
</tr>
<tr>
<td>Median DOR-CR, months</td>
<td>Not reached</td>
</tr>
<tr>
<td>Median PFS, months</td>
<td>5.3</td>
</tr>
<tr>
<td>Median OS, months</td>
<td>NR</td>
</tr>
</tbody>
</table>

Axicabtagene Ciloleucel Toxicity in Lymphoma

N=108 with Toxicity Analysis

<table>
<thead>
<tr>
<th>Worst Grade</th>
<th>Worst Grade</th>
<th>Worst Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>97 (90)</td>
<td>9 (8)</td>
</tr>
<tr>
<td>3/4</td>
<td>43 (39)</td>
<td>9 (8)</td>
</tr>
<tr>
<td>5</td>
<td>35 (33)</td>
<td>0</td>
</tr>
<tr>
<td>Cytokine Release Syndrome, N (%)</td>
<td>88 (81)</td>
<td>11 (10)</td>
</tr>
</tbody>
</table>

ASCO’s 2018 Advance of the Year

Death from CAR T-Cell Therapy

<table>
<thead>
<tr>
<th>Study</th>
<th>Malignancy</th>
<th>CAR T-Cell</th>
<th>Day of Death</th>
<th>Cause of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgan 2010</td>
<td>Colon Cancer</td>
<td>HER2-28-ζ</td>
<td>5</td>
<td>ARDS</td>
</tr>
<tr>
<td>Brentjens 2010</td>
<td>CLL</td>
<td>CD19-28-ζ</td>
<td>2</td>
<td>CRS</td>
</tr>
<tr>
<td>Frey 2014</td>
<td>B-ALL</td>
<td>CD19-41BB-ζ (Taageneleucel) (CTL019)</td>
<td>5</td>
<td>CRS (+Influenza)</td>
</tr>
<tr>
<td>15</td>
<td>CRS (+Sepsis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kochenderfer 2015</td>
<td>PMBCL</td>
<td>CD19-28-ζ</td>
<td>16</td>
<td>Cardiac arrest</td>
</tr>
<tr>
<td>Chong 2016</td>
<td>FL</td>
<td>CD19-41BB-ζ</td>
<td>--</td>
<td>Encephalitis</td>
</tr>
<tr>
<td>Neelapu (Zuma-1)</td>
<td>DLBCL</td>
<td>CD19-28-ζ Axicabtagene ciloleucel (KTE-C19)</td>
<td>--</td>
<td>HLH</td>
</tr>
</tbody>
</table>

Death from CAR T-Cell Therapy

<table>
<thead>
<tr>
<th>Study</th>
<th>Malignancy</th>
<th>CAR T-Cell</th>
<th>Day of Death</th>
<th>Cause of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locke 2016 (Zuma-1)</td>
<td>NHL</td>
<td>CD19-28-ζ</td>
<td>--</td>
<td>Cardiac arrest</td>
</tr>
<tr>
<td>Turtle 2016</td>
<td>B-ALL</td>
<td>CD19-41BB-ζ</td>
<td>122</td>
<td>CRS Neurotoxicity</td>
</tr>
<tr>
<td>Turtle 2016</td>
<td>NHL</td>
<td>CD19-41BB-ζ</td>
<td>30</td>
<td>CRS (+GI Bleed) Neurotoxicity (+CNS Bleed)</td>
</tr>
<tr>
<td>Rocket 2017</td>
<td>B-ALL</td>
<td>CD19-28-ζ (UCAR015)</td>
<td>--</td>
<td>Cerebral edema X 5</td>
</tr>
<tr>
<td>Zuma-1 (2017)</td>
<td>NHL</td>
<td>CD19-28-ζ</td>
<td>--</td>
<td>Cerebral edema</td>
</tr>
<tr>
<td>Turtle</td>
<td>CLL</td>
<td>CD19-41BB-ζ</td>
<td>11</td>
<td>Cerebral edema</td>
</tr>
</tbody>
</table>

Assessing CAR T-Cell Toxicities

ICANS = immune effector cell-associated neurotoxicity syndrome
CRS Pathophysiology

- Most common toxicity of cellular immunotherapy
- Triggered by activation and expansion of T cells
- Complex pathophysiology
 - IL-2, soluble IL-2Rα, INFγ, IL-6, soluble IL-6R, and GM-CSF
 - Monocyte and macrophage activation
 - Dendritic cell activation

Clinical Symptoms

Clinical Signs and Symptoms Associated with CRS

<table>
<thead>
<tr>
<th>Organ System</th>
<th>Constitutional</th>
<th>Gastrointestinal</th>
<th>Respiratory</th>
<th>Cardiovascular</th>
<th>Coagulation</th>
<th>Renal</th>
<th>Hepatic</th>
<th>Neurologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever, rigors, malaise, fatigue, anorexia, myalgias, arthralgias, nausea, vomiting, headache</td>
<td>Nausea, vomiting, diarrhea</td>
<td>Tachypnea, hypoxemia</td>
<td>Tachycardia, widened pulse pressure, hypotension, increased cardiac output (early), diminished cardiac output (late)</td>
<td>Elevated D-dimer, hyprofibrinogenemia, bleeding</td>
<td>Headache, mental status changes, confusion, delirium, word finding difficulty, aphasia, hallucinations, tremor, dysmetria, altered gait, seizure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASBMT CRS Grading Consensus Guidelines

<table>
<thead>
<tr>
<th>CRS Parameter</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>Temp ≥ 38°C</td>
<td>Temp ≥ 38°C</td>
<td>Temp ≥ 38°C</td>
<td>Temp ≥ 38°C</td>
</tr>
<tr>
<td>Hypotension</td>
<td>None</td>
<td>Not requiring vasopressors</td>
<td>Requiring one vasopressor</td>
<td>Requiring multiple vasopressors</td>
</tr>
<tr>
<td>Hyposia</td>
<td>None</td>
<td>Low-flow oxygen</td>
<td>High-flow oxygen</td>
<td>Positive pressure</td>
</tr>
</tbody>
</table>

Diffculty Developing “Universal Guidelines”

- Different CAR T-cell constructs
 - Different magnitude and timing of toxicity
- Different disease states
 - NHL
 - AML
- Patient characteristics
 - Age
 - Comorbidities
 - Prior therapy
 - Cytokine response
 - Variability in biomarker utilization/reliability
- Inpatient versus outpatient
- Dose, timing, and choice of corticosteroids
- Dose, timing, and choice of anti-IL6 blockade

Biomarkers for CRS

- Barriers to biomarker utilization
 - Assays are not readily available
 - Severity of CRS is not predicted by cytokine levels
 - Panels need to measure multiple cytokines
- C-reactive protein (CRP)
 - Acute phase reactant
 - Produced in response to IL-6 production
 - Lag time is 1-2 days
 - Peak levels and fold increase in CRP may be predictive
- Ferritin is not predictive of CRS development but may indicate severity
- Hypofibrinogenemia

Variability in Cytokine Response

- Baseline cytokines are variable based on age, gender and ethnicity
- Disease burden
- Type of malignancy
- Relative and absolute changes in cytokine must be considered
- Presence of inflammatory disease
- Infection

Tocilizumab

- Humanized mAB targeting IL-6R
- Inhibits IL-6 binding to both membrane-associated and soluble IL-6Rs
- Inhibiting classical and proinflammatory trans-signaling
- Side effects: transaminitis, thrombocytopenia, hyperlipidemia, and an increased risk of infection
- Effective treatment for CRS
- Symptoms begin to clear within hours
- Cytokines return to normal within 48 hours
- Dose: 8 mg/kg IV once and may be repeated up to 4 doses
- Must keep 2 doses per patient available per REMS for approved CAR T-cell therapies

FDA Approval of Tocilizumab for CAR T Associated CRS

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Retrospective, pooled analysis of prospective clinical trials involving CT019 and KTE-C19 in hematologic malignancies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary objective</td>
<td>Characterize resolution of CRS (grade 3 or higher)</td>
</tr>
<tr>
<td>Responders defined</td>
<td>No fever or vasopressors required within 14 days of tocilizumab administration</td>
</tr>
<tr>
<td></td>
<td>No more than 2 doses of tocilizumab required</td>
</tr>
<tr>
<td></td>
<td>No drugs other than tocilizumab or corticosteroids used for treatment</td>
</tr>
<tr>
<td>Results</td>
<td>CT019, N=45</td>
</tr>
<tr>
<td>Response Rate</td>
<td>69%</td>
</tr>
<tr>
<td>Median time to tocilizumab (days)</td>
<td>4</td>
</tr>
<tr>
<td>Median doses of tocilizumab</td>
<td>1</td>
</tr>
<tr>
<td>Median time to response (days)</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Tocilizumab-Refractory CRS

- Tocilizumab refractory CRS may emerge as a distinct pathophysiological entity
- All patients had ALL treated with anti-CD22 CAR T cells
- 10 subjects evaluated: 7 developed CRS
- One patient developed grade 4 CRS with manifestations of HLH that was unresponsive to tocilizumab
- Higher IL-2 (35 pg/mL) versus median 6.1 pg/mL
- GM-CSF level higher at 12 hours (28 pg/mL) versus median 1 pg/mL
- No rise in IL-6
- Ultimately had CR

HLH/MAS: A Complication of CAR T-Cells

- Constellation of symptoms
 - High fevers, hepatosplenomegaly, hepatic dysfunction, coagulopathy, hypofibrinogenemia and hyperferritinemia
 - IL-2R, MCP-1 and MIP1B and other proinflammatory cytokine production
 - Leads to immune activation and excessive inflammation
 - Lymphocytic tissue infiltration
 - Hemophagocytosis present in bone marrow
 - Multisystem organ failure may result
 - Tocilizumab is treatment of choice
 - Some may choose HLH directed treatment with etoposide

ARS Question #2

- Which of the following CAR construct and time to toxicity are appropriately matched?
 A. Tisagenlecleucel → CD28 co-stimulatory domain → faster onset of CRS
 B. Axicabtagene ciloleucel → 4-1BB co-stimulatory domain → faster onset of CRS
 C. Axicabtagene ciloleucel → CD28 co-stimulatory domain → faster onset of CRS
 D. Tisagenlecleucel → 41BB co-stimulatory domain → faster onset of CRS

hs = hemophagocytic lymphohistiocytosis
MAS = macrophage activation syndrome
Other Alternatives for Prevention and Treatment of CRS

- Prophylactic tocilizumab?
- CAR T-cell dose refinement
- Siltuximab binds IL-6
- Anakinra IL-1 receptor antagonist
- Point of care cytokine measurement
- Incorporation of suicide genes

Assessing CAR T-Cell Toxicities

- Determine CAR T-Cell Toxicity
 - CRS
 - Fever
 - Hypotension
 - Hypoxia
 - Organ Toxicity
 - ICANS
 - CARTOX-10
 - Seizure
 - Increased ICP
 - Motor Weakness

- Manage according to grade of CRS
- Manage according to grade of ICANS

Pathophysiology of ICANS

- Passive diffusion of cytokines into the brain
- High serum levels of IL-6 and IL-15 associated with severe neurotoxicity
- Trafficking of T cells into the CNS
- Presence of CAR T-cells in cerebrospinal fluid from patients with neurotoxicity
- Disruption of blood brain barrier
- Elevated protein levels
- Secondary cortical irritation
- Diffuse generalized slowing consistent with encephalopathy on EEG
- Seizure activity
- MRI and CT scans are usually negative
- Exceptions: cerebral edema

Characterization of ICANS

- Typically manifests as toxic encephalopathy
 - Earliest signs are diminished attention, language disturbance, impaired handwringing
 - Severe ICANS (Immune effector cell-associated neurologic symptoms) is associated with seizures, mental obtundation, increased ICE and cerebral edema
 - May be biphasic
 - Phase I: typically within first 5 days
 - Fever and other CRS symptoms present
 - Typically shorter duration and lower grade
 - Responsive to anti-IL-6 therapy
 - Phase II: delayed neurotoxicity occurring during weeks 3-4 after CAR T-cell therapy
 - Longer duration and higher grade neurotoxicity
 - Anti-IL-6 therapy is not effective!

ASBMT ICANS Grading Consensus Guidelines

<table>
<thead>
<tr>
<th>Domain</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICE</td>
<td>7-9</td>
<td>3-6</td>
<td>0-2</td>
<td>Unable to perform</td>
</tr>
<tr>
<td>Level of Consciousness</td>
<td>Awakens spontaneously</td>
<td>Awakens to voice</td>
<td>Awakens with tactile stimulus</td>
<td>Unarousable</td>
</tr>
<tr>
<td>Seizure</td>
<td>N/A</td>
<td>N/A</td>
<td>Seizure resolving with intervention</td>
<td>Life-threatening or recurring seizure</td>
</tr>
<tr>
<td>Motor Findings</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Deep focal motor weakness</td>
</tr>
<tr>
<td>Increased ICP/cerebral edema</td>
<td>N/A</td>
<td>N/A</td>
<td>Focal/Local Edema</td>
<td>Diffuse cerebral edema, Papilledema</td>
</tr>
</tbody>
</table>

ICE = immune effector cell-associated encephalopathy

Management of ICANS

<table>
<thead>
<tr>
<th>Grade</th>
<th>Management Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Supportive care, IV fluids, Management of agitation, Neurology consult, papilledema assessment, lumbar puncture, MRI, EEG</td>
</tr>
<tr>
<td></td>
<td>If associated with CRS, consider anti-IL-6 therapy</td>
</tr>
<tr>
<td>2</td>
<td>Dexamethasone 20 mg IV daily or methylprednisolone 1 mg/kg IV q12h if refractory to anti-IL-6 therapy, or for CRS without concurrent CRS</td>
</tr>
<tr>
<td></td>
<td>Consider transfer to ICU</td>
</tr>
<tr>
<td>3</td>
<td>Transfer to ICU, Corticosteroids, continue until grade 1 CRS then taper Acetazolamide</td>
</tr>
<tr>
<td></td>
<td>Consider mechanical ventilation, Seizure management, High dose corticosteroids, Management of increased ICP and papilledema</td>
</tr>
</tbody>
</table>

ARS Question #3

BR, a 55 year old male with multiply-relapsed NHL receives axicabtagene ciloleucel infusion. He tolerates his pre-conditioning chemotherapy and the infusion without many problems. However, on day 2 of his infusion, he develops a fever with a low-flow oxygen requirement. He is slower to arouse than usual, but still wakes when his name is called. This is most likely described and treated by which of the following:

A. Grade 2 CRS with overlapping Grade 1 neurotoxicity → JR should receive a dose of tocilizumab 8 mg/kg.
B. Grade 3 Neurotoxicity → BR should receive dexamethasone 10 mg IV q 6 hours until resolution
C. Grade 1 CRS → BR should receive a dose of siltuximab 11 mg/kg
D. BR is not experiencing any toxicities associated with CAR T-cell therapy

Ongoing Trials: Axicabtagene Ciloleucel (Zuma-3)

<table>
<thead>
<tr>
<th>Trial Design</th>
<th>Phase I/II trial of KTE-C19 for r/r ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients, N=35</td>
<td>≥ 18 yo >5% bone marrow blasts Could have received prior CD19 targeted therapy (blinatumomab)</td>
</tr>
<tr>
<td>Primary Endpoint</td>
<td>Safety</td>
</tr>
<tr>
<td>Secondary Endpoints</td>
<td>Incidence and time to onset of adverse events Rates of undetectable MRD remission in bone marrow KTE-C19 expansion and persistence</td>
</tr>
<tr>
<td>Results</td>
<td>2 grade 5 events: cerebral infarction; CRS ≥ Grade 3 CRS (26%); onset 5 days ≥ Grade 3 neurotoxicity (46%); onset 7 days MRD negative 78% Expansion occurred across all dosing groups</td>
</tr>
</tbody>
</table>

Conclusions

- Treatment options for r/r ALL and lymphoma include conventional combination chemotherapy and novel targeted therapies including CAR T-cells.
- CRS and ICANS are common and significant toxicities associated with CAR T-cell therapy.
- A multidisciplinary approach is required to manage patients that receive CAR T-cell therapies.

Chimeric Antigen Receptor T-Cell Therapies: Improving outcomes, but at what risk?

Larry W. Buie, PharmD, BCOP FASHP
Clinical Manager, Adult Pharmacy Services
PGY2 Oncology Pharmacy Residency Program Director
Memorial Sloan Kettering Cancer Center
12 October 2019