Pharmacist’s Guide to Managing Anemia in Chronic Kidney Disease

Indu Lew, PharmD
Corporate Vice President of Clinical Pharmacy Services
RWJBarnabas Health
West Orange, NJ

This activity is supported by an independent educational grant from American Regent, Inc.

Disclosures

• Speaker for Amgen, American Regent

Learning Objectives

• Explain the impact of anemia on quality of life and mortality risk
• Compare and contrast therapies used in the management of anemia in patients with Chronic Kidney Disease (CKD)
• Discuss laboratory tests and monitoring parameters used to evaluate anemia
• Identify a treatment plan for the management of anemia based on patient specific parameters

Anemia: Prevalence

• Anemia affects 30% of the world population
• 3.4 million Americans diagnosed
 – Millions more undiagnosed
 – Most common blood disorder in the US
• Hospitalized patients
 – Within 3 days of admission, > 90% of ICU patients anemic
• Hemodialysis patients
 – 97% anemic

Chronic Kidney Disease

• Any condition that causes reduced kidney function over a period of time. Chronic kidney disease may develop over many years and lead to end-stage renal disease (ESRD).
• The five stages of CKD are:
 – Stage 1: Kidney damage with normal kidney function (estimated GFR ≥90 mL/min) and persistent proteinuria (≥3 months.)
 – Stage 2: Kidney damage with mild loss of kidney function (estimated GFR 60-89 mL/min) and persistent proteinuria (≥3 months).
 – Stage 3: Mild-to-severe loss of kidney function (estimated GFR 30-59 mL/min).
 – Stage 4: Severe loss of kidney function (estimated GFR 15-29 mL/min).
 – Stage 5: Kidney failure requiring dialysis or transplant for survival. Also known as ESRD (estimated GFR <15 mL/min)

Prevalence of CKD

• The overall prevalence of CKD in the general population is approximately 14 percent.
• More than 661,000 Americans have kidney failure. Of these, 468,000 individuals are on dialysis, and roughly 193,000 live with a functioning kidney transplant.

Prevalence of Anemia Increases as GFR Declines

<table>
<thead>
<tr>
<th>GFR*</th>
<th>Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 60</td>
<td>21.6%</td>
</tr>
<tr>
<td>≥ 30 to < 60</td>
<td>5.6%</td>
</tr>
<tr>
<td>≥ 15 to < 30</td>
<td>41.6%</td>
</tr>
<tr>
<td>< 15</td>
<td>48.3%</td>
</tr>
</tbody>
</table>

*GFR = mL/min/1.73m².

Anemia Due to Chronic Kidney Disease (CKD) Is a Health Concern and Affects Hospital Systems

- Patients with CKD and anemia incurred higher annual direct health care costs compared to those without anemia (US claims data 1999-2001).1
- Medical costs for anemic patients were as much as twice those for non-anemic patients with the same comorbid conditions (US claims data 1998-2001).2
- Dialysis patients are hospitalized an average of twice per year.3
- Hospitalizations were associated with a decline in Hb levels among patients on dialysis4 – Hb levels should rise as events resolve4 – ≥2 months may be required to return to baseline Hb4

Definition of Anemia

- “A patient has an anemia whenever the hemoglobin level or the number of circulating red blood cells is reduced”

Pathogenesis

- Loss of RBC
 - Bleeding (e.g. menstrual or GI tract, HD)
- Excessive destruction of RBC
 - Hemolysis: sepsis, antibodies, drugs, prosthetic valves
 - Decreased red cell survival: hereditary disorders
- Poor, insufficient, or abnormal red blood cell production
 - Increased cytokine production (malignancies, dialysis, infection and inflammation)
 - Bone marrow infiltration
 - Inadequate iron intake or iron stores
 - Decreased erythropoietin production (CKD)

Anemia as a Complication of Other Diseases

- NDD-CKD (Non-dialysis dependent)
- Hemodialysis
- Peritoneal Dialysis
- HIV
- Malignancy
- Multiple System Failure (ICU patients)
- Inflammatory diseases (IBD, RA, SLE)
- Anemia of Pregnancy/Postpartum/Uterine Bleeding

Pathophysiology of Anemia Due to CKD: Erythropoietin Deficiency

- Erythropoietin Deficiency
- Hypoxia
- Increased O2-Carrying Capacity
- Bone Marrow
- RBCs

RBCs = red blood cells.

Pathophysiology of Anemia Due to CKD: Erythropoietin Deficiency

- Hypoxia
- Erythropoietin Deficiency
- Bone Marrow
- Increased O2-Carrying Capacity
- RBCs

Causes of Anemia in Hemodialysis Patients
- Decreased endogenous erythropoietin
- Blood sampling
- Dialyzer blood loss
- Occult bleeding
- Reduced RBC survival
- Dietary iron deficiency
- Bone marrow suppression
- Vitamin deficiencies
 - Malnutrition (malabsorption)

Symptoms and Consequences of Anemia

Symptoms
- Fatigue
- Shortness of breath
- Impaired exercise tolerance
- Lightheadedness
- Difficulty concentrating
- Pale skin
- Tachycardia

Consequences
- Decreased quality of life
- Decreased exercise tolerance
- Reduced cardiac workload
- Worsened LVH, CHF
- Reduced mentation
- Increased hospitalization
- Increased mortality

Mortality Risk

- Compared to patients who had no known co-morbidity, patients with DM had a 50% increased risk of death
- Anemia and CKD were independently associated with a 100% increased risk of death
- Mortality risk was further increased in patients who had multiple co-morbidities with anemia being a significant multiplier of mortality risk

- DM: Relative risk 1.5
- Anemia: Relative risk 2.0
- CKD: Relative risk 2.0
- DM and Anemia: Relative risk 2.4
- DM and CKD: Relative risk 2.4
- DM, Anemia, and CKD: 3.6

Laboratory tests and monitoring parameters used to evaluate anemia

- Hb response to an ESA takes between 2 and 6 weeks

- About 8 Days
- About 26 Days

- IMPAIRED KIDNEY FUNCTION IN PATIENTS WITH CKD LEADS TO DECREASED ERYTHROPOIETIN PRODUCTION

RBCs = red blood cells.
Hemoglobin and CKD

• Hemoglobin (Hb) testing should be carried out in all patients with CKD, regardless of stage or cause.

• Diagnosis of anemia should be made and further evaluation should be undertaken at the following Hb concentrations:
 – < 13.5 gm/dL in males; < 12.0 gm/dL in females

• Lower limit of Hb: In patients with CKD, Hb should be 11.0 gm/dL or greater. (MODERATELY STRONG RECOMMENDATION)

• Upper limit of Hb: there is insufficient evidence to recommend routinely maintaining Hb levels at 13.0 gm/dL or greater in ESA-treated patients

Anemia Indices: Hemoglobin (Hb) vs Hematocrit (Hct)

• Severity of anemia is assessed best by measuring Hb concentration rather than Hct

• Hb is a stable analyte that is measured directly.

• The Hb assay is standardized and is not influenced by differences in instrumentation

• Hct measurement is relatively unstable and lacks standardization.

• Hct result is derived indirectly by automated analyzers and is instrumentation dependent

• Hct increases with storage temperature and duration because stored red blood cells swell

Iron Indices

• TSAT
 – Iron availability for transport to bone marrow for incorporation into heme
 – % transferrin saturated with iron
 – (serum iron/TIBC) x 100
 – Normal range 20-50%
 – Lower limit ≥ 20%

• Ferritin
 – Index of total iron stores
 – Normal range 12-300 ng/mL
 – HD patients: Target 200 – 500 ng/mL (previously 800 ng/mL)
 – Non dialysis (ND) or peritoneal dialysis (PD) patients: Target 100 – 500 ng/mL (previously 800 ng/mL)

Iron Deficiency in CKD and HD

• Blood losses are usually high

• In patients using erythropoietic stimulating agents (ESA) therapy, assuring adequate iron stores in order to support erythropoiesis is critical

• Oral iron usually can not maintain adequate iron stores, especially in patients receiving (ESA)

• Prevention of functional and absolute iron deficiency by regular use of IV iron improves sensitivity to ESA

Functional vs Absolute Iron Deficiency Anemia

• Functional Iron Deficiency
 – Iron stores can not be mobilized quickly enough for production of new RBCs
 – Ferritin: ≥ 100 ng/mL
 – TSAT< 20%

• Absolute Iron Deficiency
 – Iron stores are depleted or are too low to support normal hemoglobin or RBCs
 – Ferritin < 100 ng/mL
 – TSAT < 20%

Therapies used in the management of anemia in patients with CKD
History of Anemia Management

- 1600s animal blood was transfused into humans
- 1800s bloodletting was common
- 1900 – 1900 patient-to-patient transfusion
- 1940 Rh factors first described
- 1990 blood substitutes, Epogen®
- 2007 Mircera®
- 2001 Aranesp®

Erythropoietin Stimulating Agents (ESAs)

- Epoetin alfa (Procrit®, Epogen®)
- Darbepoetin alfa (Aranesp®)
- ESAs stimulate the bone marrow to produce red blood cells

Epoetin alfa (Procrit®, Epogen®)

- The recommended starting dose for adult patients is 50 to 100 Units/kg 3 times weekly intravenously or subcutaneously
- The intravenous route is recommended for patients on hemodialysis.

Darbepoetin alfa (Aranesp®)

- CKD patients on dialysis
 - The recommended starting dose is 0.45 mcg/kg intravenously or subcutaneously once every 2 weeks as appropriate.
 - The intravenous route is recommended for patients on hemodialysis.

- CKD patients not on dialysis
 - The recommended starting dose is 0.45 mcg/kg body weight intravenously or subcutaneously given once at four week intervals as appropriate.

Darbepoetin alfa (Aranesp®)

<table>
<thead>
<tr>
<th>Previous epoetin alfa dose (Units/week)</th>
<th>Aranesp® adult starting dose (mcg/week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1,500</td>
<td>6.25</td>
</tr>
<tr>
<td>1,500 to 2,499</td>
<td>6.25</td>
</tr>
<tr>
<td>2,500 to 4,999</td>
<td>12.5</td>
</tr>
<tr>
<td>5,000 to 10,999</td>
<td>25</td>
</tr>
<tr>
<td>11,000 to 17,999</td>
<td>40</td>
</tr>
<tr>
<td>18,000 to 33,999</td>
<td>60</td>
</tr>
<tr>
<td>34,000 to 89,999</td>
<td>100</td>
</tr>
<tr>
<td>≥ 90,000</td>
<td>200</td>
</tr>
</tbody>
</table>

Warnings

- ESAs increase the risk of death, myocardial infarction, stroke, venous thromboembolism, thrombosis of vascular access and tumor progression or recurrence.
- Initiate ESA treatment when the hemoglobin level is less than 10 g/dL.

https://www.fda.gov/Drugs/DrugSafety/ucm259639.htm

Package Inserts:
- Epoetin alfa (Procrit®, Epogen®)
- Darbepoetin alfa (Aranesp®)
Warnings

- In controlled trials, patients experienced greater risks for death, serious adverse cardiovascular reactions, and stroke when administered ESAs to target a hemoglobin level of greater than 11 g/dL
- No trial has identified a hemoglobin target level, ESA dose, or dosing strategy that does not increase these risks.
- Use the lowest dose sufficient to reduce the need for RBC transfusions

Utilization of Iron During Erythropoiesis

- During therapy with ESA, rate of erythropoiesis increases 2-3 fold
- Iron moves from reticuloendothelial cells to erythroid marrow
- May result in absolute iron deficiency
- Diminished availability of iron to erythrocyte precursors is most significant mechanism for inadequate response to therapy

Iron therapy can be given in two formulations

- Oral iron
- Intravenous iron

Choice Between Oral vs Intravenous Formulations

- Acuity of the anemia
- Costs
- Availability of different iron replacement products
- Ability of the patient to tolerate oral iron preparation
- Most patients are treated with oral iron because it is generally effective, readily available, inexpensive, and safe.
- However, up to 70 percent of patients for whom oral iron is prescribed report gastrointestinal side effects

Current available Oral Iron Formulations in the US

<table>
<thead>
<tr>
<th>Agent</th>
<th>Amount of elemental iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrous Fumarate</td>
<td>contains 33% elemental iron per mg of mineral salt</td>
</tr>
<tr>
<td>Ferrous Gluconate</td>
<td>contains approximately 10 to 14% elemental iron per mg of mineral salt</td>
</tr>
<tr>
<td>Ferrous Sulfate</td>
<td>generally contains 20 to 30% elemental iron per mg of mineral salt, but can vary by manufacturer</td>
</tr>
<tr>
<td>Polysaccharide Iron Complex</td>
<td>The number in the name is the mg of elemental iron (eg, NovaFerrum 50 contains 50 mg elemental iron per capsule)</td>
</tr>
</tbody>
</table>

Causes of Failure of Oral Iron

- Non adherence
- GI Disturbances
- Iron malabsorption
Issues to Consider

Causes of Failure of Oral Iron
- Non-adherence
- GI Disturbances
- Iron malabsorption

Causes of Failure of IV Iron
- Anaphylaxis
- Hypersensitivity reaction

Uses for IV Iron
- Patients who cannot (or prefer not to) tolerate the gastrointestinal side effects of oral iron.
- Patients who prefer to replete iron stores in one or two visits rather than over the course of several months.
- Ongoing blood loss that exceeds the capacity of oral iron to meet needs (e.g., heavy uterine bleeding)
- Anatomic or physiologic condition that interferes with oral iron absorption.
- Coexisting inflammatory state that interferes with iron homeostasis.
- Patients receiving supplemental ESA therapy

Approved Dosing Guidelines

<table>
<thead>
<tr>
<th>Agent</th>
<th>IV Push</th>
<th>IV Infusion</th>
<th>Total Repletion Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium ferric gluconate (Ferrlecit)</td>
<td>125 mg over 10 min</td>
<td>125 mg/100 mL over 1 hour</td>
<td>1 gram</td>
</tr>
<tr>
<td>Iron sucrose (Venofer)</td>
<td>100 – 200 mg over 2-5 min</td>
<td>100 – 400 mg infusion</td>
<td>1 gram</td>
</tr>
<tr>
<td>Iron dextran</td>
<td>100 mg over 2 min</td>
<td>Not FDA approved</td>
<td>1 gram</td>
</tr>
<tr>
<td>Ferumoxytol (Feraheme)</td>
<td>Not available</td>
<td>510 mg in 50-200 mL over at least 15 min</td>
<td>1 gram</td>
</tr>
<tr>
<td>Ferric carboxymaltose (Injectafer)</td>
<td>750 mg, IVP at 100 mg/min</td>
<td>750 mg in no more than 250 mL over 15 min</td>
<td>1500 mg</td>
</tr>
</tbody>
</table>

Patient Case

- A 65-year-old man with stage 3 CKD presents to the nephrology office. He has a 7-year history of type 2 diabetes and presents with a foot ulcer. Hemoglobin level (Hb) is 8.4 g/dL, serum ferritin level is 87 ng/mL, and TSAT is 15%.

- Would you immediately begin ESA therapy?

Role of Pharmacist’s in Anemia Management

- Appropriate initiation, titration, and discontinuation of ESA
- Evaluate appropriateness of oral versus intravenous iron agents in CKD patients
- Monitor for adverse reactions
- Monitor markers of efficacy: Hb, TSAT, Ferritin
- Follow-up Medication Use Evaluations to monitor outcomes and adherence with guidelines

Patient Case

- A 67-year-old man with stage 3 CKD presents to the nephrology office for routine follow-up. He reports feeling fatigued, but denies other specific complaints. He brings labs which were recently collected at his primary care physician's office to the visit, which show a hemoglobin of 8.0 gm/dL, TSAT 25%, serum ferritin 200 ng/mL.

- Would you begin ESA therapy as first line treatment?
Thank you

CPE credit will be automatically uploaded to CPE Monitor upon your successful completion of the post-test and submission of the evaluation.